

Available online at www.sciencedirect.com

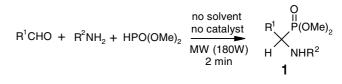
Tetrahedron Letters 47 (2006) 1125-1127

Tetrahedron Letters

Microwave-assisted solvent-free and catalyst-free Kabachnik–Fields reactions for α -amino phosphonates

Xue-Jun Mu,^a Mao-Yi Lei,^a Jian-Ping Zou^{a,*} and Wei Zhang^{b,*}

^aKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Suzhou University, 1 Shizi St. Suzhou 215006, Jiangsu, China


^bFluorous Technologies, Inc., University of Pittsburgh Applied Research Center, 970 William Pitt Way, Pittsburgh, PA 15238, USA

Received 4 October 2005; revised 3 December 2005; accepted 6 December 2005 Available online 27 December 2005

Abstract—A highly efficient solvent-free and catalyst-free method for the synthesis of α -amino phosphonates is developed by a microwave-assisted three-component Kabachnik–Fields reaction involving aldehyde, amine, and dimethyl phosphite. © 2005 Elsevier Ltd. All rights reserved.

α-Amino phosphonates are phosphorus analogs of amino acids,¹ which have been widely used as imaging agents and as antitumor, antihypertensive, and antibacterial agents.² Among the literature methods, the Kabachnik-Fields reaction³ is one of the most convenient approaches to a-amino phosphonates. It is a one-pot, three-component reaction of carbonyl compound, amine, and dialkyl phosphite. The reaction usually needs a Lewis acid catalyst such as indium(III) chloride,⁴ rare earth triflates,⁵ and scandium tris(dodecyl sulfate).⁶ Recently, SmI₂,⁷ LiClO₄,⁸ metal triflates [M(OTf)*n*, M = Li, Mg, Al, Cu, Ce],⁹ TaCl₅-SiO₂,¹⁰ montmorillonite clay,¹¹ Al₂O₃,¹² CF₃CO₂H,¹³ scandium(tris-dodecyl sulfate),⁶ BF₃·Et₂O,¹⁴ and tetra-*tert*butyl-substituted phthalocyanines Pht-1-Pht-3¹⁵ have also been reported as the catalysts. A broad range of catalysts has been employed for the Kabachnik-Fields reaction. However, many of these catalysts are expensive and have to be used in stoichiometric amount. The catalyst-free synthesis of α -amino phosphonates is rather limited.16

Microwave-promoted¹⁷ solvent-free¹⁸ heterogeneous reactions have received much attention due to their high efficiency, cost effective, and environmentally friend characteristics. Described in this paper is a microwave-assisted solvent-free and catalyst-free method for the synthesis of α -amino phosphonates (Scheme 1).

Scheme 1.

A catalyst-free Kabachnik–Fields reaction of benzaldehyde, aniline, and dimethyl phosphite was first attempted using ethanol as a solvent. After the reaction mixture was stirred at room temperature for 2 h, no desired product **1a** was detected (Table 1, entry 1). Similar results were obtained when the reactions were carried out at different temperatures and in different solvents such as toluene and CH_2Cl_2 (Table 1, entries 4–5).

Catalyst-free Kabachnik–Fields reactions under the solvent-free conditions were then explored. The reaction of benzaldehyde, aniline, and dimethyl phosphate at 50 °C for 2 h gave desired product **1a** in 76% yield. A higher yield (85%) was obtained after heating the reaction mixture at 80 °C for 2 h (Table 1, entry 8).¹⁹ Finally, microwave heating was introduced to reduce the reaction time. Indeed, after the reaction mixture was irradiated in a multimood microwave reactor at 180 W for only 2 min, the reaction was completed and the yield of **1a** was increased to 98% (Table 1, entry 9).²⁰

To evaluate the synthetic scope, reactions of different aldehydes and amines with dimethyl phosphite were

^{*} Corresponding authors. Tel./fax: +86 512 65112371 (J.-P.Z.); tel.: +1 412 8263062; fax: +1 412 8263053 (W.Z.); e-mail addresses: wuyanhong@pub.sz.jsinfo.net; w.zhang@fluorous.com

^{0040-4039/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.12.027

Table 1. Catalyst-free synthesis of α -aminophosphonate 1a

Entry	Solvent	Temp (°C)	Time (min)	Yield (%) ^a
1	EtOH	rt	120	nr ^b
2	EtOH	50	120	nr
3	EtOH	reflux	120	nr
4	Toluene	Reflux	120	nr
5	CH_2Cl_2	Reflux	120	nr
6	Solvent-free	rt	120	nr
7	Solvent-free	50	120	76
8	Solvent-free	80	120	85
9	Solvent-free	80, mw ^c	2	98

^a Isolated yields.

^b nr = no reaction.

 c mw = microwave heating.

conducted and the results are shown in Table 2. Reactions involving benzaldehydes and anilines produced products **1a–1e** and **1i–1n** in excellent yields.¹⁹ Reactions of aliphatic amines, aliphatic aldehydes, and heterocyclic aldehydes such as 2-furylaldehyde and 2-thiophene aldehyde produced corresponding products **1f–1g**, **1o– 1r**, and **1s–1u** in good to excellent yields. Steric hindered *tert*-butyl aldehyde and 2,6-dimethyl aniline were also evaluated. In the case of reaction involving benzaldehyde and 2,6-dimethylaniline, good yield of **1v** (78%) was produced. However, reactions involving *tert*-butyl aldehyde, *p*-toluidine, or 2,6-dimethyl aniline afforded **1w** and **1x** in 53% and 40% yields, respectively, much lower than reactions using other substrates listed in Table 2.

In summary, we have developed a novel microwaveassisted, catalysts-free, and solvent-free Kabachnik– Fields reaction for the synthesis of α -amino phospho-

Table 2. Microwave-assisted	synthesis of	α -aminor	phosphonates
-----------------------------	--------------	------------------	--------------

Product ^a	\mathbb{R}^1	R ²	Time (min)	Yield (%) ^b
1a	Ph	Ph	2	98
1b	Ph	p-MeC ₆ H ₄	2	94
1c	Ph	$p-ClC_6H_4$	2	96
1d	Ph	o-ClC ₆ H ₄	2	97
1e	Ph	m-BrC ₆ H ₄	2	96
1f	Ph	Naphthyl	2	86
1g	Ph	Cyclohexyl	2	87
1h	Ph	PhCH ₂	2	86
1i	p-MeOC ₆ H ₄	Ph	2	96
1j	p-MeOC ₆ H ₄	p-MeC ₆ H ₄	2	94
1k	p-MeOC ₆ H ₄	p-ClC ₆ H ₄	2	91
11	$p-NO_2C_6H_4$	Ph	2	89
1m	$p-NO_2C_6H_4$	p-MeOC ₆ H ₄	2	87
1n	$p-NO_2C_6H_4$	p-ClC ₆ H ₄	2	84
10	<i>i</i> -Propyl	Ph	2	88
1p	<i>i</i> -Propyl	p-MeC ₆ H ₄	2	83
1q	<i>i</i> -Propyl	p-MeOC ₆ H ₄	2	85
1r	<i>i</i> -Propyl	p-ClC ₆ H ₄	2	80
1s	2-Furyl	p-MeC ₆ H ₄	2	88
1t	2-Furyl	p-ClC ₆ H ₄	2	76
1u	2-Thiophene	$p-NO_2C_6H_4$	2	85
1v	Ph	2,6-diMeC ₆ H ₃	2	78
1w	<i>tert</i> -Butyl	p-MeC ₆ H ₄	2	53
1x	tert-Butyl	2,6-diMeC ₆ H ₃	2	40

^a Products were characterized by their NMR and MS spectra.

^b After flash column chromatography.

nates. The reaction process is highly efficient, economic, and also environmentally friendly.

Acknowledgements

We thank the Key Laboratory of Organic Synthesis of Jiangsu Province and Suzhou Scientific Committee for financial supports (JSK016 and SG 0219).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2005.12.027.

References and notes

- 1. Sheridan, R. P. J. Chem. Inf. Comput. Sci. 2002, 42, 103. 2. (a) Kafarski, P.; Lejczak, B. Phosphorus, Sulfur Silicon Relat. Elem. 1991, 63, 1993; (b) Allen, M. C.; Fuhrer, W.; Tuck, B.; Wade, R.; Wood, J. M. J. Med. Chem. 1989, 32, 1652; (c) Grembecka, J.; Mucha, A.; Cierpicki, T.; Kafarski, P. J. Med. Chem. 2003, 46, 2641; (d) Moore, J. D.; Sprott, K. T.; Fisher, A. J.; Tony, M. Biochemistry 2002, 67, 8123; (e) Liu, W.; Rogers, C. J.; Fisher, A. J.; Toney, M. Biochemistry 2002, 41, 12320; (f) Kim, K. S.; Hurh, E. Y.; Youn, J. N.; Park, J. I. J. Org. Chem. 1999, 64, 9272; (g) Osipov, S. N.; Artyushin, O. I.; Kolomeits, A. F.; Bruneau, C.; Dixneuf, P. H. Synlett 2000, 1031; (h) Baylis, E. K.; Campbell, C. D.; Dingwall, J. G. J. Chem. Soc., Perkin Trans. 1 1984, 2845; (i) Atherton, F. R.; Hassal, C. H.; Lambert, R. W. J. Med. Chem. 1986, 29, 29.
- (a) Kabachnik, M. I.; Medved, T. Y. Dokl. Akad. Nauk SSSR. 1952, 689; Chem. Abstr. 1953, 47, 2724b; (b) Fields, E. K. J. Am. Chem. Soc. 1952, 74, 1528; (c) For a review on the Kabachnik–Fields reaction, see: Cherkasov, R. A.; Galkin, V. I. Russ. Chem. Rev. 1998, 67, 857.
- 4. Ranu, B. C.; Hajra, A.; Jana, U. Org. Lett. 1999, 1, 1141.
- 5. (a) Qian, C. T. T.; Huang, S. J. Org. Chem. 1998, 63, 4125;
 (b) Lee, S.; Park, J. H.; Kang, J.; Lee, J. K. Chem. Commun. 2001, 1698.
- 6. Manabe, K.; Kobayashi, S. Chem. Commun. 2000, 669.
- Xu, F.; Luo, Y. Q.; Deng, M. Y.; Shen, Q. Eur. J. Org. Chem. 2003, 4728.
- 8. Saidi, M. R.; Azizi, N. Synlett 2002, 1347.
- 9. Firouzabadi, H.; Iranpoor, N.; Sobhani, S. *Synthesis* 2004, *16*, 2692.
- Chandrasekhar, S.; Prakash, S. J.; Jagadeshwar, V.; Narsihmulu, C. *Tetrahedron Lett.* 2001, 42, 5561.
- 11. Yadav, J. S.; Reddy, B. V. S.; Madan, C. Synlett 2001, 1131.
- 12. Kaboudin, B.; Nazari, R. Tetrahedron Lett. 2001, 42, 8211.
- 13. Akiyama, T.; Sanada, M.; Fuchibe, K. Synlett 2003, 1463.
- 14. Ha, H.-J.; Nam, G.-S. Synth. Commun. 1992, 22, 1143.
- Matveeva, E. D.; Podrugina, T. A.; Tishkovskaya, E. V.; Tomilova, L. G.; Zefirov, N. S. Synlett 2003, 15, 2321.
- 16. Ranu, B. C.; Hajra, A. Green Chem. 2002, 4, 551.
- 17. Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250.
- 18. For a general review on solvent-free reactions, see: Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025.
- General procedures for preparation of α-amino phosphonates under conventional heating: Benzaldehyde (1 mmol),

aniline (1 mmol), and dimethyl phosphite (2 mL) were added into a 25 mL three-necked flask. The mixture was stirred at 80 °C for 2 h. The reaction mixture was then diluted with water and extracted with CH₂Cl₂ (20 mL). The organic layer was washed with H₂O (3×10 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude product was purified by silica gel flash column chromatography eluted with 2:1 petroleum ether/acetone to give pure α -amino phosphonate **1a** in 85% yield.

20. General procedures for preparation of α-amino phosphonates under microwave irradiation: Benzaldehyde (1 mmol), aniline (1 mmol), and dimethyl phosphite (2 mL) were added into a 25 mL three-necked flask. The mixture was then heated at 80 °C for 2 min at 180 W in a multimood microwave oven. The reaction mixture was diluted with water and extracted with CH₂Cl₂ (20 mL). The organic layer was washed with H₂O (3 × 10 mL), dried over anhydrous Na₂SO₄, filtered, concentrated, and the crude product was purified by silica gel flash column chromatography eluted with 2:1 petroleum ether/acetone to give pure α -amino phosphonate **1a** in 98% yield, mp 90–91 °C. ¹H NMR (400 MHz) (CDCl₃): δ 7.48–6.59 (10H, m, 2C₆H₅), 4.81 (1H, d, ¹J_{PH} = 24.40 Hz, CH), 3.76 (3H, d, ²J_{PH} = 10.60 Hz, OCH₃), 3.46 (3H, d, ²J_{PH} = 10.60 Hz, OCH₃); δ 146.4, 135.9, 129.6, 129.2, 128.5, 128.2, 118.9, 114.2, 55.5 (d, ¹J_{CP} = 150.2 Hz, CH), 54.3, 54.2; HRMS calcd for C₁₅H₁₈NO₃P 291.1024, found 291.1022.